Optimization of Fuzzy Semantic Networks Based on Galois Lattice and Bayesian Formalism

نویسنده

  • Mohamed Nazih Omri
چکیده

This paper presents a method of optimization, based on both Bayesian Analysis technical and Galois Lattice of Fuzzy Semantic Network. The technical System we use learns by interpreting an unknown word using the links created between this new word and known words. The main link is provided by the context of the query. When novice’s query is confused with an unknown verb (goal) applied to a known noun denoting either an object in the ideal user’s Network or an object in the user’s Network, the system infer that this new verb corresponds to one of the known goal. With the learning of new words in natural language as the interpretation, which was produced in agreement with the user, the system improves its representation scheme at each experiment with a new user and, in addition, takes advantage of previous discussions with users. The semantic Net of user objects thus obtained by learning is not always optimal because some relationships between couple of user objects can be generalized and others suppressed according to values of forces that characterize them. Indeed, to simplify the obtained Net, we propose to proceed to an Inductive Bayesian Analysis, on the Net obtained from Galois lattice. The objective of this analysis can be seen as an operation of filtering of the obtained descriptive graph.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fuzzy Knowledge Representation, Learning and Optimization with Bayesian Analysis in Fuzzy Semantic Networks

This paper presents a method of optimization, based on both Bayesian Analysis technical and Gallois Lattice, of a Fuzzy Semantic Networks. The technical System we use learn by interpreting an unknown word using the links created between this new word and known words. The main link is provided by the context of the query. When novice’s query is confused with an unknown verb (goal) applied to a k...

متن کامل

Categories of lattice-valued closure (interior) operators and Alexandroff L-fuzzy topologies

Galois connection in category theory play an important role inestablish the relationships between different spatial structures. Inthis paper, we prove that there exist many interesting Galoisconnections between the category of Alexandroff $L$-fuzzytopological spaces, the category of reflexive $L$-fuzzyapproximation spaces and the category of Alexandroff $L$-fuzzyinterior (closure) spaces. This ...

متن کامل

 Structure Learning in Bayesian Networks Using Asexual Reproduction Optimization

A new structure learning approach for Bayesian networks (BNs) based on asexual reproduction optimization (ARO) is proposed in this letter. ARO can be essentially considered as an evolutionary based algorithm that mathematically models the budding mechanism of asexual reproduction. In ARO, a parent produces a bud through a reproduction operator; thereafter the parent and its bud compete to survi...

متن کامل

Rule-based joint fuzzy and probabilistic networks

One of the important challenges in Graphical models is the problem of dealing with the uncertainties in the problem. Among graphical networks, fuzzy cognitive map is only capable of modeling fuzzy uncertainty and the Bayesian network is only capable of modeling probabilistic uncertainty. In many real issues, we are faced with both fuzzy and probabilistic uncertainties. In these cases, the propo...

متن کامل

Energy-Saving in Wireless Sensor Networks Based on Optimization Sink Movement Control

A sensor network is made up of a large number of sensors with limited energy. Sensors collect environmental data then send them to the sink. Energy efficiency and thereby increasing the lifetime of sensor networks is important. Direct transfer of the data from each node to the central station will increase energy consumption. Previous research has shown that the organization of nodes in cluster...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • CoRR

دوره abs/1206.1852  شماره 

صفحات  -

تاریخ انتشار 2012